US009064037B2

a2 United States Patent

Basava et al.

US 9,064,037 B2
Jun. 23, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

AUTOMATED CORRELATION AND
ANALYSIS OF CALLSTACK AND CONTEXT

DATA

Applicant: Microsoft Corporation, Redmond, WA
(US)

Inventors: Shibani Basava, Redmond, WA (US);
Bertan Aygun, Issaquah, WA (US);
Philip Edward Price, Seattle, WA (US);
Roman Golovin, Redmond, WA (US);
Anton Kolesnyk, Redmond, WA (US);
Nathan Ryan Halstead, Kirkland, WA
(US)

Assignee: Microsoft Corporation, Redmond, WA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 231 days.

Appl. No.: 13/715,879

Filed: Dec. 14, 2012

Prior Publication Data

US 2014/0173359 Al Jun. 19, 2014

Int. CL.

GO6F 11/00 (2006.01)

GO6F 11734 (2006.01)

GO6F 11/32 (2006.01)

U.S. CL

CPC GO6F 11/3409 (2013.01); GO6F 11/34

(2013.01); GOGF 2201/86 (2013.01); GO6F
117323 (2013.01); GO6F 11/3466 (2013.01);
GO6F 2201/81 (2013.01); GO6F 11/3423
(2013.01)
Field of Classification Search

CPC . GOG6F 11/34; GOGF 11/32
USPC e 714/46

See application file for complete search history.

500,
N

(56) References Cited

U.S. PATENT DOCUMENTS

6,779,180 B1* 82004 Palmcoovevvreennrnns 718/100
7,379,999 Bl 5/2008 Zhou et al.
7,546,587 B2* 6/2009 Marretal.ocooevens 717/127
7,730,460 B1* 6/2010 Warrenetal. 717/133
8,015,552 Bl 9/2011 Lindahl et al.
8,032,867 B2 10/2011 Bansal

(Continued)

FOREIGN PATENT DOCUMENTS

WO 2006113111 A2 10/2006

OTHER PUBLICATIONS

Basava, Shibani et al., “Immediate Delay Tracker Tool,” pending
U.S. Appl. No. 131241,229, filed Sep. 23, 2011.

(Continued)

Primary Examiner — Amine Riad

(74) Attorney, Agent, or Firm —Kevin Sullivan; Kate
Drakos; Micky Minhas

(57) ABSTRACT

Embodiments allow a user to define event scenarios that are
used to analyze callstack and context data. Scenarios that are
delayed are flagged and reported to the user with an aggre-
gated callstack of CPU samples taken during the delay. An
aggregation is done for samples for the main user interface
thread of the process that is being monitored. A user may
select other threads to see the callstack aggregation for that
thread. The user can identify which methods use the most
time for a particular delay from the callstack presentation. An
event analysis tool allows quick exploration of the respon-
siveness issues by visualizing delays as they happen and
allowing the user to drill down into callstack details for
selected delays.

18 Claims, 6 Drawing Sheets

=alx

Iﬁs Options Help

Qpen ETL |P» Start Tracking @ Enable Recording
[Timeline] Delay List

|_processexe] | e]

Delay (ms)

1) []
L3870

1782 ms

10,000
5,000 5275 ms
44 ms 557 ms ||
T T T
L S . L
A

LA A

503
1914 ms
T T

ol ol ol el el al el e

o 5 e - 5 5 5
Time

501 Package Load [l Unresponsive

Solution Load

B idie Deiay

vent Watch | Stack Traces

Timestamp § Type Event Name

Description

3:36:44 561 § Disk Read } DiskloRead

3:36:44 565 1 CodeMarkeri Task34460pcode51
3:36:44 566 ¢ Disk Read 1 DiskloRead

3:36:44 593 1 CodeMarker! Task70400pcodes1
3:36:44 595 § Delay CS CompletionList
3:36:44 595 § CodeMarker} Task85170pcode51
3:36:44 595 § Deley Unresponsive

502

Read: C:\directoryAlsub-directoryBifile

9448 - perfySPerfwWastonUnResponsive

Read: C:\directoryAtsub-directoryBifile

7040 - perfVSEditorStatementCompletionPaint
Duration: 8553ms, Start: 3:36:36 042, END: 3:36:44 595
8517 - perf¥SCSharpCompleticnListEnd

Duration: 8680ms, Start: 3:36:35 905, END: 3:36:44 595

{ ¢ !

504 505 508

¢

507

US 9,064,037 B2
Page 2

(56)

8,166,022
8,286,139
8,307,246
8,607,201
8,635,696
8,719,791
8,839,271
2009/0241095
2010/0107014
2010/0318852
2011/0099550
2012/0159449
2013/0080502
2014/0215442

References Cited
U.S. PATENT DOCUMENTS

B2 4/2012 Han et al.

B2* 10/2012 Jonesetal.

B2* 11/2012 Shochat et al. .
B2* 12/2013 Chenetal. ...
Bl* 1/2014 Aziz ...

B1* 5/2014 MacPherson et al.

B2* 9/2014 Jonesetal. ...
Al* 9/2009 Jonesetal. ..

Al* 4/2010 Shochatetal. ...

Al 12/2010 Zheng et al.
Al 4/2011 Shafi

Al* 6/2012 Armoldetal.

Al* 3/2013 McColl et al.

Al* 7/2014 Rabin ...

. 719/318

OTHER PUBLICATIONS

Basava, Shibani et al., “User Interface Responsive Monitor,” pending
U.S. Appl. No. 13/241,249, filed Sep. 23, 2011.

""" 717/128 Park, Insung et al., “Improve Debugging and Performance Tuning

L 714/38.1 with ETW,” MSDN Magazine, Apr. 2007, (10 pages).

... 717/125 Micro Focus, “Devpartner Performance Analysis Suite 10.6,” Data
. 726/23 Sheet, 2012, (3 pages).

717/124 Dynatrace, “Continuous Application Performance for Enterprise

717/128 NET Systems,” Brochure, (date unknown), (21 pages).

........ 714/37 “International Search Report & Written Opinion for PCT Patent

Application No. PCT/US2013/075215”, Mailed Date: Oct. 28,2014,

...... 717/125 12 Pages.
e 709/203 . .
...... 717/125 * cited by examiner

U.S. Patent Jun. 23,2015 Sheet 1 of 6 US 9,064,037 B2

102 IDE
106
Scenario
settings file,
103 Events ETL output
l location
104~ DT Event L 401

Analysis Tool

Delay events, ETL file,

CPU sample
callstacks for the
delays
105
FIG. 1
602 623 604 605
Enabled | Name Minimum| Markers
Delay
Time
X IdleDelay 50 Code Marker, 1d=9444
Input Delay 75 Code Marker, 1d=9445
x Unresponsive 500 Code Marker, 1d=9447
Code Marker, 1d=9446
X Menu Delay 100 Code Marker, 1d=9449
601" Code Marker, 1d=9450
X ScrollingDelay-Editor 75 Measurement Block;
Category=VsTextEditor.Scroll.*,
Type=Begin
Editor Render
L]
L]
®

FIG. 6

U.S. Patent Jun. 23, 2015 Sheet 2 of 6

US 9,064,037 B2

Is recording

enhabled?

Is recording
enabled?

Live mode end

209

201 = Start the event analyzer tool
202~ User identifies selected process and selects “Start Tracking”
203 Delay tracker tool starts listening to events from the selected
process
205 Event analyzer tool directs a trace recorder in the delay tracker
tool to start recording
A 4
206 Delay tracker tool obsgrves a delay, and event analyzer tool
displays the delay
A 4
207 User selects “Stop Tracking”
210 Merge kernel, runtime, and rundown in a single ETL file
2117 Resolve symbols and analyze trace file
A 4
2127 User selects a delay for further analysis
A 4
213 Event analyzer toll rolls up the stacks for the selected delay and

displays to user

FIG. 2

US 9,064,037 B2

Sheet 3 of 6

Jun. 23, 2015

U.S. Patent

£ OId

Buiplooal e Je)s Jo azAleue o) 8|l 7113 Ue apiacid

seoel] Yorls | yoiepn Jueag

Rejeg oip| E] peoT uoinnjos aAlsuodsaiun [[] peo sbexoed B3

W 10€

axo'ssaooud

Buipiooay o|qeuq O Bupjoe.] 1els ~A_ 713 uedo

SOOAL ABa(]
o]
& £ § 8§ S S S S S S S
x y ° X’ X X X ° WY q° 3 < G <
_@) _(5)) _nv i _mc ® _1 _0 &@ _& _(m -
mJ 1] swyy |
swzgsl “—¢ig Sw L6 Sm\(——_ Sui L66 4
zLe R SW 6,26 N m 0005 > 10€
Lie 60€ goe |-
s
0,98 | o000l
(sw) Aejeg |
1511 Aejeq [auiswil f~—zog

/ diopy suondo o4

x|o]—]

A

¢

90

N

/

S0€

A
Sm\ mom\ /oom

US 9,064,037 B2

Sheet 4 of 6

Jun. 23, 2015

U.S. Patent

80¥

v "OId gLy A% Ly
S N
9 POl i %6L9Li ¥060L l
4 pourei i %6L9Li v'060L 4 ’
3 pourei i %B6L9Li 10601)
a PoylaN ¥ i %8lzel $'6802 % Ll oy
oL O POl % ” %25 oY ” 9°020€ ” !
gpPoweN % Dy | %Es9ri €120E ! !
voouew %0 %l/zoi 6llov! Ll
awield § anisnpul s (sw) Aejaqg SHH
siv~A x| seoel] %08l | uorem Jusag
; ; ; : vy -
PyYZ 6GILEL § GELBSILEL Y 2Ol) Aejo@ oip] § 8062
12188G1€1L $0298GLEL L 20) b SlI4MaINBI ABNIOS § 8062
18VZ JGILEL 1 /28 9S'LEL 1 20l 1BMOUASYpapuedxT ABN|OS & 8062
§8YZ LGILETL § /T8 OGILEIL Y ZOL i Uoos||oDAydIRISIH ABNIOS § soec| ..,
1691 9G1LC1L 1 LZ6 VEILEL L ZOL ¢ 9|I4MaIASId ABNJOS & 8062
'EB ECILEIL POV LZILEL Y ZOL ! aAisuodsalun 8062
16Vl VEILETL § PO PEILEL } 20l §BMOUASYpapuedxT ABN|OS |} 8062
Y6UL VEILEIL § VO VELEL S 20) § UOROSIIODAUIRISIH ABNIOS § 8062
i dWlil pu3 | Bwil] Jejs uoheing adA| Aeja@ i pI wmmoogn_.h.mllmov
\“ / / [Lasodeea] suewn i~
JEN | oxa'sseogud | mc_v\oomw_ o|geu] @ mcioﬂ._. tﬁw‘ 113 uedo
/ " /) 9 9 dieH Jysuondo ajd
x (o]] [2/ / \
/ VANA / / \
LY 07 SO0E 90 Sov vov Kol

AN

0[0)4

US 9,064,037 B2

Sheet 5 of 6

Jun. 23, 2015

U.S. Patent

s OId 106 920G S0S ¥0s
¢ ¢ ¢ m

0 T 3 =

GBS ¥i:9€:€ ‘AN ‘G06 GE:9€:€ “MBIS 'SWp99g ‘uoheIng m aAisuodsalun m Aejaq m G6G V¥ 9CC

puzsiquons|dwondieysosAied - 2168 m LGepoodo .| sgisel vatm_\,_mvoo m G6G V¥ 9CC

GBS Y¥:9€:€ :ANIT ‘Z¥0 9€:9¢€:¢ 1BIS ‘sWiggsg tuojelng m }siuona|dwod O m Aejaq m G6S vV 9CC

Julequons|dwodiuswaielsioypasAMed - 010. m L Gepo2dOoy0Lisel va:m_\,_mvoo m €66 vyoc:ie | - C0S

ali\gAI010alIP-gns\yAIOIRIIP\:D (pesy m pesyopisid m pesy ¥%siq m 996G v¥:9¢:€C

aAlsuodsayqunuolsepMadSAKed - 916 m L Gepo2dOgyreiseL va:m_\,_mvoo m G9G v¥9C€C
3\gAI010aUIP-gNS\yAIOIRIIP\:D (pesy m peayopisid m pesy ¥si(m 196 yyioee |

uonduosa(SWEN JuaAT § adA] } dweysswi]

seoel] YoBlg _ UOJBAA JUBAT _\ﬂ\

S _&e QT Y _zé NN

Rejeg oip| E] peoT uoinnjos aAlsuodsaiun [[] peo sbexoed B3 L0S
TS8dA] AelaQq

S S - - S S
o o x@& x@& g x@&

_ ﬂ _ _ | _ _ & _ W
.._ sw /GG sw vy |
swiggll sWw 16l
-.w.FF_. - --J | .
o008, 00001
(sw) Aejaqg

151 Aejeq | suiswil

axo'ssaooud

Buiplooay eiqeuq O Bunpoel] LeIS A_ 713 uedo

deH suondo @l

x|o]—]

AN

00S

U.S. Patent Jun. 23, 2015

700

¢

Sheet 6 of 6

704

"~

US 9,064,037 B2

706

.

701N\ PROCESSING UNIT

COMPUTER-
READABLE
MEDIA

2\

AN

MONITOR

703

\/

DATA
STORAGE

702

NETWORK
INTERFACE

/-/

707

FIG. 7

USER INTERFACE

\.\

705

US 9,064,037 B2

1
AUTOMATED CORRELATION AND
ANALYSIS OF CALLSTACK AND CONTEXT
DATA

BACKGROUND

In current integrated development environments (IDE),
investigating performance issues is a manual process that
requires taking a “trace” or “profile” of an operation and then
reviewing inclusive and exclusive CPU samples to determine
where performance is being impacted. This manual analysis
is time consuming, and there is a big learning curve for the
current performance tools.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

Embodiments allow a user to define event scenarios that are
used to analyze callstack and context data. Scenarios that are
delayed are flagged and reported to the user with an aggre-
gated callstack of CPU samples taken every 1 ms during the
delay. This allows the user to identify which methods used the
most time for a particular delay. An event analysis tool allows
quick exploration of the responsiveness issues by visualizing
delays as they happen without requiring analysis after the
fact.

Embodiments automatically correlate event start and stop
times within one trace to scenarios that are defined in a set-
tings file. A delay is detected when the time elapsed to receive
a start and end event exceeds a scenario limit. The methods or
threads that are impacted by the delay are listed for the user.

A graphical representation of the delays is provided in real
time and allows the user to quickly navigate to the callstack
for the impacted activity/scenario for a particular thread right
from the delay list after processing. The callstack is an aggre-
gated view of CPU samples taken every 1 ms from the start of
the delay to the end.

The hottest path in the scenario is determined by highlight-
ing all frames that spend time more than twenty percent of the
whole delay time in a method or any method called from this
method. For example, all methods that spend more than
twenty percent of the total delay time are highlighted. The
twenty percent includes any time that is spent in other meth-
ods called by a method. However, that called method is not
flagged if it spends less than twenty percent of the total delay
time. Additional asset information, such as module loads,
disk file reads, etc., and other events that happen between the
start and end of a delay are also available to the user. These
results may be filtered by module using user-selected filter
criteria to identify exactly which delays are associated with
selected code in the callstack.

DRAWINGS

To further clarify the above and other advantages and fea-
tures of embodiments of the present invention, a more par-
ticular description of embodiments of the present invention
will be rendered by reference to the appended drawings. It is
appreciated that these drawings depict only typical embodi-
ments of the invention and are therefore not to be considered
limiting of its scope. The invention will be described and

10

15

20

25

30

35

40

45

50

55

60

65

2

explained with additional specificity and detail through the
use of the accompanying drawings in which:

FIG. 1 illustrates the areas of responsibility for various
components associated with the event analysis tool and the
information being exchanged by the components.

FIG. 2 is a flowchart illustrating a method or process for
analyzing events according to one embodiment.

FIG. 3 is an example display for an event analysis tool for
recording and displaying delays in a process.

FIG. 4 is an example display for the event analysis tool that
shows the callstacks for a selected delay.

FIG. 5 is an example display for the event analysis tool that
shows context information for a selected delay.

FIG. 6 illustrates an interface that allows users to edit
existing scenarios 601 from the event analysis tool.

FIG. 7 illustrates an example of a suitable computing and
networking environment for the event analysis tool, delay
tracker tool, or IDE.

DETAILED DESCRIPTION

Various embodiments are directed to an event analysis tool
that automatically correlate event start and stop times within
one trace and provide a list of impacted activities and sce-
narios to a user. The event start and stop times correspond to
scenarios, which may be defined in a settings file or may be
provided by the user. The event analysis tool may use a delay
tracker such as a mechanism for tracking delays in responding
to user inputs that require an immediate response. In one
embodiment, an Immediate Delay Tracker (or IDT) library is
used to track delays in the response time of user actions so that
the source of the delay may be identified and remedied. An
example of an Immediate Delay Tracker tool is described in
pending U.S. patent application Ser. No. 13/241,229, filed
Sep. 23,2011, and titled “Immediate Delay Tracker Tool,” the
disclosure of which is hereby incorporated herein by refer-
ence in its entirety. In other embodiments other delay tracker
systems may be used with the event analysis tool described
herein. One example of such a delay tracker system is
described in pending U.S. patent application Ser. No. 13/241,
249, filed Sep. 23, 2011, and titled “User Interface Respon-
siveness Monitor,” the disclosure of which is hereby incorpo-
rated herein by reference in its entirety.

The IDT identifies and records delays that occur during an
application execution. The IDT looks for a sequence of events
raised by an IDE application to identify scenarios that are
defined in a settings file or data structure. A “delay” is iden-
tified when a scenario—i.e., the length of time elapsed to
receive a certain sequence of events—exceeds its allowable
threshold. Delays are typically measured in CPU tick counts
and then converted to milliseconds when presented to user or
while compared to limits in the settings file. A settings file or
data structure contains information about the sequence of
events that define a scenario and includes the millisecond
threshold at which the scenario is considered a delay. The
event analysis tool described herein, which is referred to as
“RaceTrack” in one embodiment, receives delay information
from the user, such as scenario definitions, and supplies that
delay information to the IDT library. The event analysis tool
uses the IDT to listens to events generated by an application
under observation. The event analysis tool reports when a
delay is found by presenting delay information in a graphical
and/or list representation.

In addition to tracking delays, an IDT library may also
provide a component to record kernel, runtime (e.g., CLR
runtime provider), and rundown traces (e.g., CLR rundown)
and then merge this information into a single ETL (Extract,

US 9,064,037 B2

3

Transform and Load) log file. The IDT library generates
events when a delay is detected and when it finishes record-
ing. The event analysis tool subscribes to these events to
generate a timeline or list showing which delays were found.
The event analysis tool allows the user to start recording a
kernel ETL trace file that contains CPU samples, context
switches, disk 10, module loads, etc. The CPU samples may
be, for example, a callstack taken every 1 ms from the appli-
cation. The user is able to see delays that happen live and may
stop the recording at any time when a delay occurs. Once the
user stops the recording, the trace is processed and analyzed.
The kernel, runtime, and rundown traces are merged together
and symbols are downloaded and resolved.

The event analysis tool provides a graphical representation
of the delays in real time and allows the user to quickly
navigate to the callstack for the impacted activity/scenario for
a particular thread right from the delay list after processing.
The stack is an aggregated view of CPU samples taken every
1 ms during the delay.

The user is presented with the list of delays encountered
during a selected scenario in a graphical representation as
well as a simple list. The graphical representation charts the
timeline of the application’s execution and illustrates the
duration of each operation, such as by the length of a bar or
other indication, so that the user can quickly see which opera-
tion took the longest time to execute.

The event analysis tool allows for quick exploration of the
application and navigation to the callstack responsible for
each delay with one click from a timeline or delay list. After
atrace has been processed, the user may click on a delay from
the graph or list and see an aggregation of all CPU samples
and context switches that fall between the start and ending
timestamp of the event sequence for the delay. In some
embodiments, the event analysis tool filters samples from a
main thread of the IDE when those samples cause the delays
seen by the user.

An aggregated tree may be presented to show all of the
different forks made in the callstack during the delay execu-
tion and to indicate how much time was spent in each frame
with respect to the total delay time. The aggregated callstack
shows where the most time was being spent during the delay.

In other embodiments, the event analysis tool highlight the
“hottest” path in the scenario by highlighting all frames that
spend time more than twenty percent of the entire delay time
in a particular method or in any method called from this
particular method. All methods that spend more than twenty
percent of the total delay time are highlighted. The twenty
percent time includes any time spent in other methods called
by this method. However, that called method is not flagged if
its time is less than twenty percent of the total delay time.

The event analysis tool shows asset information such as
component loaded, which key was typed, module loads, and
other events that occur between the start and end of a delay.
When the event analysis tool receives an event, such as mod-
ule load and package load, it extracts information to deter-
mine which module or component was loaded. Similarly,
when a key press event is received, the tool parses out the
information on what key was pressed.

The user can select a delay or other criteria to filter the list
of events displayed by the event analysis tool so that only
those events that happen during the span of the delay are
shown. This shows the user all the assets, such as component
loaded or key typed, and events that concern a selected delay.

In order to further simplify delay analysis for the user, the
event analysis tool allows the delays to be filtered by modules
that come into execution during an operation. The delays may
be filtered by module to identify exactly which delay has the

10

15

20

25

30

35

40

45

50

55

60

65

4

selected code in its stack. This helps to narrows the field of
investigation when the user is focused on certain modules or
code. Only those delays that contain the module in question
will be displayed to the user, reducing the overhead of having
to sift through a number of unrelated delays.

FIG. 1 illustrates the areas of responsibility for various
components associated with the event analysis tool 101 and
the information being exchanged by the components. An IDE
102 provides events 103 to a delay tracker, such as an IDT
104. The events 103 may include, for example, code markers
or measurement blocks. IDT 104 listens to the events 103 in
view of scenarios defined in a settings file or user profile. IDT
104 flags delays observed in any scenarios and records ETL
files.

IDT 104 detects delays in an application and collects call-
stacks at regular intervals while the application is running. In
one embodiment, the callstacks are collected in CPU samples
every 1 ms. IDT 104 provides the delay events, ETL files, or
CPU sample callstacks 105 to the event analysis tool 101,
which uses the information for analysis of the application. For
example, event analysis tool 101 may aggregate the callstacks
for different scenarios. The event analysis tool 101 may pro-
vide the following types of information to a user, among
others: graphical and list representations of the delays, call-
stack rollup with hot path displayed, contextual information
onthe delays, and filtered delays by module and other criteria.

Event analysis tool 101 starts and stops recording events as
directed by the user. For example, a user may select a “start
recording” or “end recording” option on the event analysis
tool 101 to indicate when the events should be collected.
Event analysis tool 101 displays the delays to the user. Event
analysis tool 101 also displays the delays to the user, rolls up
the callstack information, and displays asset information.
Event analysis tool 101 uses this information and generates a
display showing the delays on a time line.

Eventanalysis tool 101 provides configuration information
106 to IDT 104, such as a scenario settings file, an ETL output
location, and other information. Using this configuration
information 106, IDT 104 then sends information 105 to the
event analysis tool 101.

FIG. 2 is a flowchart illustrating a method or process for
analyzing events according to one embodiment. In step 201,
the user starts the event analysis tool. The event analysis tool
is configured to receive inputs, such as delay event informa-
tion, from a delay tracker tool, such as an IDT. In step 202, the
user identifies a process of interest and selects “Start Track-
ing” on the event analysis tool. The user may start the track-
ing, for example, by selecting a button on a user interface.

In step 203, the delay tracker tool begins listening to events
collect the information from the selected process. At 204, the
event analysis tool determines if recording is enabled. If
recording is enabled in step 204, then the event analysis tool
directs atrace recorder in the delay tracker tool to start record-
ing in step 205. The delay tracker tool records and processes
an ETL file, for example.

If recording is not enabled in step 204, then the process
moves to step 206. When the delay tracker tool sees a delay in
the selected process, the event analysis tool displays the delay
in step 206. The delays may be displayed live on a graph or
timeline, for example, as they occur and/or are detected.
While tracking is still active, the delays are not further pro-
cessed at this point.

In step 207, the user selects “Stop Tracking,” and, in step
208, the event analysis tool determines again if recording is
enabled. If recording is not enabled, then the event analysis
tool ends the live mode at step 209 and no longer updates or
analyzes the delay events.

US 9,064,037 B2

5

If recording is enabled, then in step 210 recorded kernel,
runtime, and rundown traces are merged into a single ETL log
file. In step 211, the event analysis tool resolves symbols and
analyzes the ETL trace file. In other embodiments, the sym-
bol resolution may occur in the IDT.

In step 212, the user can select a delay for further analysis.
In step 213, the event analysis tool rolls up the callstacks for
the selected delay and displays to the user.

FIG. 3 is an example display 300 for an event analysis tool
for recording and displaying delays in a process. The timeline
301 shows the type of delays observed and how long each
delay took. The user may select to view the timeline with
option 302, begins tracking with option 303, and enables
recording with option 304. The selected process is identified
in field 305 and any filter selected is shown in field 306.

A number of different delay types 307 may be displayed
and analyzed. These delays may be associated with a scenario
that is defined by the user or in a setting file. Each delay type
is associated with a different pattern or color that is used on
timeline 301 to identify the observed delay types. For
example, package load delays 308 and 309 were detected at
time 3:36:36 and 336:39, respectively. Package load delay
308 lasted 44 ms, and package load delay 309 lasted 557 ms.
Other delays, such as unresponsive delays 310, 311 and solu-
tion load delays 312, 313 are also displayed as they are
detected.

Each delay is shown with a corresponding time that indi-
cates how long the delay lasted. The delays are shown on
timeline 301 when an event lasts longer than a maximum
setting for that scenario.

When the tracking ends, such as by the user unselecting
option 303, then the event analysis tool begins analyzing the
trace file and resolving the symbols to show the user callstack
rollups.

FIG. 4 is an example display 400 for the event analysis tool
that shows the callstacks for a selected delay. Delay List
option 401 is selected in display 400 (instead of Timeline
option 302), which generates a list of delays 402. The delays
402 are associated with the selected process 403. Each delay
type 404 is listed along with the duration 405 of the delay. A
start time 406 and end time 407 for each delay is also shown.

The user has selected delay 408 in this example, which a
list 410 of the specific methods involved with this delay. List
410 indicates what methods were called during the selected
delay 408 so that the user can determine what methods are
relevant to different delays. The methods are arranged in the
order each of them were called. For example, in group 416,
Method A was the entry point into the IDE; it called Method
B, which called Method C, and so on. When a fork is seen, for
example from Method E to Method F and Method G, it
indicates that Method E called both Method F and Method G
during the delay and some time was spent in each. The dura-
tion in column 411 shows how much time was being spent in
each method (and the methods called by this method) inclu-
sively. Additionally, there is an indication 412 of the time
spent in each method as a percent of the overall delay time.
This allows the user to quickly see which methods contribute
the most delay. The duration 411 and inclusive percent 412
represent the time spent in the method and all the methods
called by the listed method as shown in expanded frames 413.
If Method A is the entry point, one-hundred percent of the
total time for delay 408 is spent in Method A, and that per-
centage of time decreases when the code path gets closer to
the actual methods (e.g., Methods F, G) that the operation
required to be executed.

The list of methods is shown when a Stack Traces option
414 is selected. Additionally, the user may select a Hot Path

10

15

20

25

30

35

40

45

50

55

60

65

6

option 415 that indicates which methods take up the most
time. The Hot Path methods may be indicated by a flame, star,
flag, or other icon. The Hot Path methods include which set of
method were the most expensive or most difficult to execute.
In one embodiment, the Hot Path methods 416 include any
method that took more than twenty percent of the total delay
time (412) to execute. The Hot Path limit may be adjusted to
set a higher or lower limit as desired by the user. The Hot Path
methods 416 indicate the areas that had the most impact on
the selected scenario. The Hot Path shows which code path
from the entry point were potentially the reason that the delay
happened.

In other embodiments, the delay list 402 for the process can
be filtered in field 417. For example, the user may select a
particular module in filter 417 and then only the delays that
contain any activity from the selected module will be shown
in list 402. This would allow developers to determine, for
example, how their extensions add delay to process 305.

FIG. 5 is an example display 500 for the event analysis tool
that shows context information for a selected delay. When the
user selects the Event Watch option 501 a list of context
information 502 is displayed. The Event Watch option 501 is
available in both the Timeline (302) and Delay List (401)
configurations. The callstack pane may also be displayed in
both the Timeline (302) and Delay List (401) configurations.
The user selects, such as by clicking on, a delay 503 on the
Timeline in this example. The context information may indi-
cate, for example, module loads, disk file reads, code mark-
ers, keys typed, etc. Each event in list 502 includes a times-
tamp 504, type 505, event name 506, and description 507.

FIG. 6 illustrates an interface 600 that allows users to edit
existing scenarios 601 from the event analysis tool. The sce-
nario information is provided to the delay tracker tool library
to determine which activities to flag in a process.

The user may select which delay events to monitor by
enabling individual scenarios in column 602. The name of
each delay event is listed in column 603. The minimum delay
time defined to identify each delay event is listed in column
604. Markers for each event are shown in column 605.

Interface 600 may be used to configure a setting file that
defines a threshold for each scenario that might be observed in
the delay tracker tool. The event analysis tool flags and dis-
plays an event if its delay exceeds this threshold.

FIG. 7 illustrates an example of a suitable computing and
networking environment 700 on which the examples of FIGS.
1-6 may be implemented to provide an IDE, delay tracker
tool, event analysis tool, and/or settings file. The computing
system environment 700 is only one example of a suitable
computing environment and is not intended to suggest any
limitation as to the scope of use or functionality of the inven-
tion. The invention is operational with numerous other gen-
eral purpose or special purpose computing system environ-
ments or configurations. Examples of well-known computing
systems, environments, and/or configurations that may be
suitable for use with the invention include, but are not limited
to: personal computers, server computers, hand-held or lap-
top devices, tablet devices, multiprocessor systems, micro-
processor-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputers, mainframe
computers, distributed computing environments that include
any of the above systems or devices, and the like.

The invention may be described in the general context of
computer-executable instructions, such as program modules,
being executed by a computer. Generally, program modules
include routines, programs, objects, components, data struc-
tures, and so forth, which perform particular tasks or imple-
ment particular abstract data types. The invention may also be

US 9,064,037 B2

7

practiced in distributed computing environments where tasks
are performed by remote processing devices that are linked
through a communications network. In a distributed comput-
ing environment, program modules may be located in local
and/or remote computer storage media including memory
storage devices.

With reference to FIG. 7, an exemplary system for imple-
menting various aspects of the invention may include a gen-
eral purpose computing device in the form of a computer 700.
Components may include, but are not limited to, various
hardware components, such as processing unit 701, data stor-
age 702, such as a system memory, and system bus 703 that
couples various system components including the data stor-
age 702 to the processing unit 701. The system bus 703 may
be any of several types of bus structures including a memory
bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Indus-
try Standard Architecture (ISA) bus, Micro Channel Archi-
tecture (MCA) bus, Enhanced ISA (EISA) bus, Video Elec-
tronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus also known as
Mezzanine bus.

The computer 700 typically includes a variety of computer-
readable media 704. Computer-readable media 704 may be
any available media that can be accessed by the computer 700
and includes both volatile and nonvolatile media, and remov-
able and non-removable media, but excludes propagated sig-
nals. By way of example, and not limitation, computer-read-
able media 704 may comprise computer storage media and
communication media. Computer storage media includes
volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information such as computer-readable instructions, data
structures, program modules or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store the desired information and which can accessed by
the computer 700. Communication media typically embodies
computer-readable instructions, data structures, program
modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term “modulated data sig-
nal” means a signal that has one or more of its characteristics
set or changed in such a manner as to encode information in
the signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic,
RF, infrared and other wireless media. Combinations of the
any of the above may also be included within the scope of
computer-readable media. Computer-readable media may be
embodied as a computer program product, such as software
stored on computer storage media.

The data storage or system memory 702 includes computer
storage media in the form of volatile and/or nonvolatile
memory such as read only memory (ROM) and random
access memory (RAM). A basic input/output system (BIOS),
containing the basic routines that help to transfer information
between elements within computer 700, such as during start-
up, is typically stored in ROM. RAM typically contains data
and/or program modules that are immediately accessible to
and/or presently being operated on by processing unit 701. By

10

15

20

25

30

35

40

45

50

55

60

65

8

way of example, and not limitation, data storage 702 holds an
operating system, application programs, and other program
modules and program data.

Data storage 702 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, data storage 702 may be a hard disk
drive that reads from or writes to non-removable, nonvolatile
magnetic media, a magnetic disk drive that reads from or
writes to a removable, nonvolatile magnetic disk, and an
optical disk drive that reads from or writes to a removable,
nonvolatile optical disk such as a CD ROM or other optical
media. Other removable/non-removable, volatile/nonvolatile
computer storage media that can be used in the exemplary
operating environment include, but are not limited to, mag-
netic tape cassettes, flash memory cards, digital versatile
disks, digital video tape, solid state RAM, solid state ROM,
and the like. The drives and their associated computer storage
media, described above and illustrated in FIG. 7, provide
storage of computer-readable instructions, data structures,
program modules and other data for the computer 700.

A user may enter commands and information through a
user interface 705 or other input devices such as a tablet,
electronic digitizer, a microphone, keyboard, and/or pointing
device, commonly referred to as mouse, trackball or touch
pad. Other input devices may include a joystick, game pad,
satellite dish, scanner, or the like. Additionally, voice inputs,
gesture inputs using hands or fingers, or other natural user
interface (NUI) may also be used with the appropriate input
devices, such as a microphone, camera, tablet, touch pad,
glove, or other sensor. These and other input devices are often
connected to the processing unit 701 through a user input
interface 705 that is coupled to the system bus 703, but may be
connected by other interface and bus structures, such as a
parallel port, game port or a universal serial bus (USB). A
monitor 706 or other type of display device is also connected
to the system bus 703 via an interface, such as a video inter-
face. The monitor 706 may also be integrated with a touch-
screen panel or the like. Note that the monitor and/or touch
screen panel can be physically coupled to a housing in which
the computing device 700 is incorporated, such as in a tablet-
type personal computer. In addition, computers such as the
computing device 700 may also include other peripheral out-
put devices such as speakers and printer, which may be con-
nected through an output peripheral interface or the like.

The computer 700 may operate in a networked or cloud-
computing environment using logical connections 707 to one
or more remote devices, such as a remote computer. The
remote computer may be a personal computer, a server, a
router, a network PC, a peer device or other common network
node, and typically includes many or all of the elements
described above relative to the computer 700. The logical
connections depicted in FIG. 7 include one or more local area
networks (LAN) and one or more wide area networks (WAN),
but may also include other networks. Such networking envi-
ronments are commonplace in offices, enterprise-wide com-
puter networks, intranets and the Internet.

When used in a networked or cloud-computing environ-
ment, the computer 700 may be connected to a public or
private network through a network interface or adapter 707.
In some embodiments, a modem or other means for establish-
ing communications over the network. The modem, which
may be internal or external, may be connected to the system
bus 703 via the network interface 707 or other appropriate
mechanism. A wireless networking component such as com-
prising an interface and antenna may be coupled through a
suitable device such as an access point or peer computer to a
network. In a networked environment, program modules

US 9,064,037 B2

9

depicted relative to the computer 700, or portions thereof,
may be stored in the remote memory storage device. It may be
appreciated that the network connections shown are exem-
plary and other means of establishing a communications link
between the computers may be used.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What is claimed is:

1. A computer-implemented method, comprising:

receiving, by a computer system, event information from a

delay tracker tool, wherein the event is a delay, and
wherein the event information is associated with delays
in a process being monitored by the delay tracker tool;
recording, by the computer system, the event information;
displaying, by the computer system, the event information
to a user;

receiving, by the computer system, a user selection of an

event; and
displaying, by the computer system, a callstack associated
with the selected event, wherein the callstack comprises
CPU samples taken at predetermined intervals during
the event, and wherein each predetermined interval is 1
ms.
2. The computer-implemented method of claim 1, further
comprising:
filtering, by the computer system, the event information
using filter criteria selected by the user; and

displaying, by the computer system, modified event infor-
mation comprising only event information that is asso-
ciated with the filter criteria.

3. The computer-implemented method of claim 2, wherein
the filter criteria comprise a module selected by the user, and
wherein the modified event information comprises only
delays associated with the selected module.

4. The computer-implemented method of claim 2, further
comprising:

displaying, by the computer system, a modified callstack

comprising only information that is associated with the
filter criteria.

5. The computer-implemented method of claim 1, further
comprising:

marking, by the computer system, one or more callstack

entries to indicated that the callstack entries are associ-
ated with an event that exceeds a minimum threshold.

6. The computer-implemented method of claim 5, wherein
marking includes marking one or more callstack entries that
lasted more than a selected percentage of a total delay time.

7. The computer-implemented method of claim 1, wherein
displaying the event information to the user further com-
prises:

in response to a user selection, displaying, by the computer

system, a timeline representing the occurrence of delays
at specific times, or displaying a list of delays observed
in the process.
8. A computer-implemented method, comprising:
recording, by a computer system, delay information from a
delay tracker tool, the delay information corresponding
to events that exceed a minimum delay time specified in
a scenario definition, wherein the events are delays;

displaying, by the computer system, the delay information
to a user either as a timeline showing the chronological
occurrence of the delays or as a delay list;

10

20

25

30

35

40

45

50

55

60

10

receiving, by the computer system, a user input indicating
a selected delay; and

displaying, by the computer system, a callstack for the
selected delay, the callstack representing CPU samples
taken at defined intervals during the selected delay, the
callstack comprising CPU samples taken at predeter-
mined intervals during the event, each predetermined
interval being 1 ms.

9. The computer-implemented method of claim 8, further

comprising:

receiving, by the computer system, a user input indicating
a selected filter; and

displaying, by the computer system, modified delay infor-
mation comprising only delays that are associated with
the selected filter criteria.

10. The computer-implemented method of claim 8, further

comprising:

marking, by the computer system, callstack entries that are
associated with a delay that is longer than a selected
minimum duration.

11. The computer-implemented method of claim 8, further

comprising:

marking, by the computer system, one or more callstack
entries that lasted more than a pre-selected duration of
time deemed as tolerable to a user.

12. The computer-implemented method of claim 8, further

comprising:
displaying, by the computer system, asset information.
13. The computer-implemented method of claim 12,
wherein the asset information further comprises disk file
reads, keys typed, or module loads.
14. A computer system, comprising:
one or More processors;
a memory coupled to the one or more processors, the
memory having stored thereon computer-executable
instructions that, upon execution by the one or more
processors, cause the computer system to:
record delay information from a delay tracker tool, the
delay information corresponding to events that
exceed a minimum delay time specified in a scenario
definition, the events comprising delays;

display the delay information to a user either as a time-
line showing the chronological occurrence of the
delays or as a delay list;

receive a user input indicating a selected delay; and

display a callstack for the selected delay, the callstack
representing CPU samples taken at defined intervals
during the selected delay, the callstack comprising
CPU samples taken at predetermined intervals during
the event, each predetermined interval being 1 ms.

15. The computer system of claim 14, wherein the com-
puter-executable instructions, upon execution by the one or
more processors further cause the computer system to:

receive a user input indicating a selected filter; and

display modified delay information comprising only
delays that are associated with the selected filter criteria.

16. The computer system of claim 14, wherein the com-
puter-executable instructions, upon execution by the one or
more processors further cause the computer system to:

mark callstack entries that are associated with a delay that
is longer than a selected percentage of a total delay.

17. The computer system of claim 14, wherein the com-
puter-executable instructions, upon execution by the one or
more processors further cause the computer system to:

display asset information.

US 9,064,037 B2
11 12

18. The computer system of claim 14, wherein the com-
puter-executable instructions, upon execution by the one or
more processors further cause the computer system to:

receive user modifications to the scenario definitions in a

settings file. 5

